Machine Learning Pocket Reference: Working with Structured Data in Python

产品编号: 196045535
安全交易
经常一起购买

描述

Full description not available

评论

C**T

Useful quick reference packed with helpful code

Machine Learning is a large domain and a book covering this topic needs to choose carefully what to cover. In Machine Learning Pocket Reference, the author chooses to focus on processing structured data. This means he avoids discussing neural network libraries such as TensorFlow or Natural Language Processing tools like spaCy or NLTK. This conscious decision means he can focus on clear and detailed code examples for solving traditional classification or regression problems using scikit-learn (and other python tools). Each chapter uses concise code samples to walk through how to use many different python packages to work through the multiple steps of a typical machine learning problem. This book is best for someone that has a little bit of exposure to python, pandas and scikit-learn and wishes to learn how to use these tools effectively. It also provides a very good introduction to about 36 other python libraries commonly used in the data science field.If you find yourself looking for quick reminders of how to use functions or are interested in multiple approaches to solving a python data science problem, this book will be a great addition to your bookshelf (real or virtual).One quick note about the size of the book. It is a quick reference so it is suitable for carrying around in your laptop bag. I was a little surprised about the size, so I am attaching an image so you can get a sense for the dimensions of the book.

J**R

The Perfect ML Companion

As Matt (the author) states in the intro to this book, it will not teach you "from scratch" data science or machine learning. While not suitable for one's first exposure to the material, it serves an excellent companion piece once you have some foundational data science/ML knowledge and a little bit of Python knowledge (pandas will help too).The book provides a thorough, example-driven treatment of every major step in a DS/ML project, from data cleaning to model evaluation. There's also coverage in terms of many common model scenarios (classification and regression) and the main models within each of those buckets (e.g., Logistic Regression for Classification and Linear/Random Forest for regression). While the book covers a lot of territory relatively speaking, the focus is on practical implications/takeaways versus going through a lot of academic background/boilerplate material. This approach gives the book a nice balance of levity and economy in its delivery.An aspect of the book that I appreciated is that it is very well segmented into terms of individual topics. Often points of interest have their own short section and are not buried in a forest of dense paragraphs. For example, if I wanted to look up something on how to deal with missing data or pre-processing steps, these have separate sections with example code provided.A pleasant surprise from this book was that it exposed me to a somewhat recent data science visualization library Yellowbrick. It's a very handy and easy-to-use library for visualization a lot of common data science charts (e.g., confusion matrix, residual versus predicted value). There are other examples of new data science visualization tools that the reader will be exposed to that I have not seen covered elsewhere (e.g., Shapley).Overall, this is a valuable companion piece either to go through end-to-end or to use as a reference when going through your own data science projects.

N**Y

good startup python ML book

good worked out examples

M**A

Good and comprehensive book

Very good overview of a theme with examples.

J**Z

Una guía útil

Aun tratándose simplemente de un manual de bolsillo, introduce el uso de bibliotecas recientes como yellowbrick que no aparecen en libros mucho más profundos sobre la materia. Es un librito interesante, que está bien tener para refrescar conceptos de vez en cuando con ejemplos claros, sencillos y que funcionan perfectamente. Si eres completamente nuevo en la materia, no te servirá de gran ayuda. Es más bien para lectores que ya tienen algún conocimiento sobre el mundo del aprendizaje automático. Como complemento de otras lecturas está muy bien.

M**

A very useful reference and learning tool

Great reference with very useful cases and applications. It lacks deep learning but it is otherwise very comprehensive. I wish there will be a similar one dedicated to deep learning.

常见问题

是的,所有产品均直接来自美国,英国,阿联酋和印度的授权零售商。我们保持严格的质量控制过程,并在运输前验证每种产品。所有项目都有适用的制造商保证,并由我们的标准退货政策涵盖。
送货时间因目的地国家 /地区不等,通常从3-9个工作日不等。每个订单都可以通过我们的系统完全跟踪。我们处理所有关闭范围,并使用可靠的快递合作伙伴进行最后一英里的交付。您将通过电子邮件和我们的应用程序定期收到有关您的订单状态的更新。
自2014年以来,落伍车是一个国际电子商务平台。我们每天在全球范围内安全地处理数千个订单。每个产品都会在交付前经过我们的质量验证过程,我们提供端到端订单跟踪,24/7客户支持以及全面的回报政策,以确保安全的购物体验。
我们的价格包括产品成本,国际运输,进口关税,关税和当地交货费用。我们处理所有海关和导入程序,确保交货时没有隐藏的费用。 Pro会员将获得额外的福利,包括免费送货。

TrustPilot

TrustScore 4.5 | 7,300多个评论

Sneha T.

我收到的产品完好无损。总体来说服务很棒。

1 个月前

拉维·S。

我很喜欢这里提供的多种产品。一定会再次光顾。

2 个月前

全球购物,通过 Desertcart 享受优惠
物有所值
各种产品的价格具有竞争力
全球购物
为 100 多个国家的数百万购物者提供服务
增强保护
深受全球购物者喜爱的值得信赖的支付方式
客户保证
深受全球购物者喜爱的值得信赖的支付方式。
沙漠车应用程序
随时随地随时随地购物。
MOP$191

关税和税费包括

Macau店铺
1
免费退货

30天对于 PRO 会员用户

15天无会员资格

安全交易

向AI询问此产品

TrustPilot

TrustScore 4.5 | 7,300多个评论

阿里·H.

发货快,包装精良。Leatherman 工具手感非常高档和坚固。

1天前

法蒂玛 A.

我尝试过的最好的国际运输。物有所值!

3天前

Machine Learning Pocket Reference Working With Structured Data In Python | Desertcart Macau